Skip to content

Architecture Overview

LLM Council uses a multi-stage deliberation process inspired by academic peer review.

High-Level Flow

User Query
┌─────────────────────────────────────────────┐
│ STAGE 1: Independent Responses              │
│ • All council models queried in parallel    │
│ • No knowledge of other responses           │
└─────────────────────────────────────────────┘
┌─────────────────────────────────────────────┐
│ STAGE 2: Anonymous Peer Review              │
│ • Responses labeled A, B, C (randomized)    │
│ • Each model ranks all responses            │
│ • Self-votes excluded from aggregation      │
└─────────────────────────────────────────────┘
┌─────────────────────────────────────────────┐
│ STAGE 3: Chairman Synthesis                 │
│ • Receives all responses + rankings         │
│ • Produces final synthesized answer         │
└─────────────────────────────────────────────┘
Final Response + Metadata

Layer Architecture (ADR-024)

Layer Responsibility
L1: Tier Selection Choose confidence tier
L2: Query Triage Classify and optimize query
L3: Orchestration Coordinate council stages
L4: Gateway Route to LLM providers

Key Design Decisions

Anonymization

Models review responses labeled "Response A", "Response B", etc. This prevents:

  • Self-preference bias
  • Provider loyalty
  • Model recognition

Peer Review

Each model evaluates all responses independently, providing:

  • Rankings (ordered preference)
  • Scores (numeric ratings)
  • Justifications

Graceful Degradation

If some models fail:

  • Continue with successful responses
  • Note excluded models in metadata
  • Never fail entire request for single model failure

Configuration Layers

YAML File
Environment Variables (override)
Runtime Parameters (override)

See ADRs for detailed design decisions.